Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38227893

RESUMO

Fumonisins are one of the main problems affecting maize production in the Texas High Plains (THP), where its agroclimatic conditions make it a perennial hotspot for mycotoxin contamination. In 2017, a fumonisin outbreak in the THP maize motivated stakeholders' request to repeal a subsection of the Texas Administrative Code, §61.61(a)(7) (Fumonisin Rule), and its related Texas Feed Industry Memorandum (Memo 5-20), which previously permitted the blending of maize containing high fumonisin levels with maize containing ≥ 5 mg/kg under state authority, and pivot to FDA fumonisin guidance. Shortly after, the USDA Risk Management Agency (RMA's) reintroduced Discount Factors (DFs) in annual Special Provisions (SP) that outline price reductions related to fumonisin contamination in maize. In this research, we estimate the potential economic burden posed by these changes through a two-part approach. In part one, we construct a decision model that explores the final disposition of fumonisin-contaminated maize based on blending permissions, fumonisin levels, and crop insurance status. In part two, we estimate the economic impact by inserting output values of the decision model into financial equations that consider testing costs, transportation fees, and discounts from crop insurance and grain elevators when applicable. Our economic analysis projects that the financial losses during a THP crop year with high fumonisin levels could range from $15.1 to $135.5 million without the option to blend under conditions of the revised RMA discount schedule. Findings further highlight crop insurance as the most promising risk management strategy for farmers in areas susceptible to fumonisin contamination.


Assuntos
Fumonisinas , Fusarium , Micotoxinas , Humanos , Fumonisinas/análise , Zea mays , Texas , Contaminação de Alimentos/análise , Micotoxinas/análise
2.
Anal Chim Acta ; 1033: 100-107, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30172315

RESUMO

A method was developed to detect and quantify organophosphate nerve agent (OPNA) metabolites in dried blood samples. Dried blood spots (DBS) and microsampling devices are alternatives to traditional blood draws, allowing for safe handling, extended stability, reduced shipping costs, and potential self-sampling. DBS and microsamplers were evaluated for precision, accuracy, sensitivity, matrix effects, and extraction recovery following collection of whole blood containing five OPNA metabolites. The metabolites of VX, Sarin (GB), Soman (GD), Cyclosarin (GF), and Russian VX (VR) were quantitated from 5.0 to 500 ng mL-1 with precision of ≤16% and accuracy between 93 and 108% for QC samples with controlled volumes. For unknown spot volumes, OPNA metabolite concentrations were normalized to total blood protein to improve interpretation of nerve agent exposures. This study provides data to support the use of DBS and microsamplers to collect critical exposure samples quickly, safely, and efficiently following large-scale chemical exposure events.


Assuntos
Teste em Amostras de Sangue Seco , Agentes Neurotóxicos/análise , Compostos Organofosforados/sangue , Compostos Organotiofosforados/sangue , Sarina/sangue , Soman/sangue , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Humanos , Agentes Neurotóxicos/metabolismo , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Sarina/metabolismo , Soman/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA